
FARADAY'S LAW

In this chapter we will discuss one of the more remark-
able, and in terms of practical impact, important laws
of physics – Faraday’s law.  This law explains the
operation of the air cart speed detector we have used
in air track experiments, the operation of AC voltage
generators that supply most of the electrical power in
the world, and transformers and inductors which are
important components in the electronic circuits in
radio and television sets.

In one form, Faraday’s law deals with the line integral
   E⋅ d  of an electric field around a closed path.  As an

introduction we will begin with a discussion of this line
integral for electric fields produced by static charges.
(Nothing very interesting happens there.)  Then we will
analyze an experiment that is similar to our air cart
speed detector to see why we get a voltage proportional
to the speed of the air cart.  Applying the principle of
relativity to our speed detector, i.e., riding along with
the air cart gives us an entirely new picture of the
behavior of electric fields, a behavior that is best
expressed in terms of the line integral    E⋅ d .  After a
discussion of this behavior, we will go through some
practical applications of Faraday’s law.

Chapter 30
Faraday's Law
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ELECTRIC FIELD
OF STATIC CHARGES
In this somewhat formal section, we show that

  E⋅d = 0  for the electric field of static charges.  With
this as a background, we are in a better position to
appreciate an experiment in which   E⋅d   is not zero.

In Figure (1), we have sketched a closed path through
the electric field E of a point charge, and wish to
calculate the line integral   E⋅d  for this path.  To
simplify the calculation, we have made the path out of
arc and radial sections.  But as in our discussion of
Figure 29-13, we can get arbitrarily close to any path
using arc and radial sections, thus what we learn from
the path of Figure (1) should apply to a general path.

Because the electric field is radial, E  is perpendicular
to  d  and   E⋅d  is zero on the arc sections.  On the radial
sections, for every step out where E⋅ dr  is positive
there is an exactly corresponding step back where E⋅ dr
is negative.  Because we come back to the starting
point, we take the same steps back as we took out, all
the radial   E⋅d r cancel and we are left with   E⋅d = 0
for the electric field of a point charge.

Now consider the distribution of fixed point charges
shown in Figure (2).  Let  E1 be the field of Q1, E2 of Q2,
etc.  Because an electric field is the force on a unit test
charge, and because forces add as vectors, the total
electric field E at any point is the vector sum of the
individual fields at that point

 E = E1 + E2 + E3 + E4 + E5
(1)

We can now use Equation (1) to calculate   E⋅d
around the closed path in Figure (2).  The result is

  
E⋅d = E1 + E2 + ... + E5 ⋅ d

= E1⋅d + + E5⋅d
(2)

But   E1⋅d = 0  since E1 is the field of a point charge,
and the same is true for E2  . . .  E5.  Thus the right side
of Equation (2) is zero and we have

  
E⋅d = 0

for the field E of
any distribution of
static charges

(3)

Equation (3) applies to any distribution of static charges,
a point charge, a line charge, and static charges on
conductors and in capacitors.
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Figure 1
Closed path through the electric field of a
point charge.  The product    E ⋅⋅d  is zero
on the arc sections, and the path goes out
just as much as it comes in on the radial
sections.  As a result    E ⋅⋅d = 0  when we
integrate around the entire path.

Figure 2
Closed path in a region of a distribution of point
charge.  Since    E ⋅⋅d = 0  is zero for the field of
each point charge alone, it must also be zero for
the total field   E = E1 + E2 + E3 + E4 + E5
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A MAGNETIC FORCE EXPERIMENT
Figures (3a,b) are two views of an experiment designed
to test for the magnetic force on the conduction elec-
trons in a moving copper wire.  We have a wire loop
with a gap and the loop is being pulled out of a magnet.
At this instant only the end of the loop, the end opposite
the gap, is in the magnetic field.  It will soon leave the
field since it is being pulled out at a velocity v as shown.

In our earlier discussions we saw that a copper atom has
two loosely bound conduction electrons that are free to
flow from one atom to another in a copper wire.  These
conduction electrons form a negatively charged elec-
tric fluid that flows in a wire much like water in a pipe.

Because of the gap we inserted in the wire loop of
Figure (3), the conduction electrons in this loop cannot
flow.  If we move the loop, the conduction electrons
must move with the wire.  That means that the conduc-
tion electrons have a velocity v to the right as shown,
perpendicular to the magnetic field which is directed
into the page.  Thus we expect that there should be a
magnetic force

  Fmag = – ev × B (4)

acting on the electrons.  This force will be directed
down as shown in Figure (3b).

Since the gap in the loop does not allow the conduction
electrons to flow along the wire, how are we going to
detect the magnetic force on them?  There is no net
force on the wire because the magnetic field exerts an
equal and opposite force on the positive copper ions in
the wire.

Our conjecture is that this magnetic force on the
conduction electrons would act much like the gravita-
tional force on the water molecules in a static column
of water.  The pressure at the bottom of the column is
higher than the pressure at the top due to the gravita-
tional force.  Perhaps the pressure of the negatively
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Figure 3b
When you pull a wire loop through a magnetic field, the electrons, moving at a velocity v with the wire, feel
a magnetic force   FB = –e v ×× B if they are in the field.  This force raises the pressure of the electron fluid
on the bottom of the loop and reduces it on the top, creating a voltage V across the gap.  The arrow next to
the voltmeter indicates a voltage rise for positive charge, which is a voltage drop for negative charge.

Figure 3a
Wire loop moving through magnetic
field of iron magnet.
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charged electric fluid is higher at the bottom of the loop
than the top due to the magnetic force.

To find out if this is true, we use an electrical pressure
gauge, which  is a voltmeter.  A correctly designed
voltmeter measures an electrical pressure drop without
allowing any current to flow.  Thus we can place the
voltmeter across the gap and still not let the conduction
electrons flow in the loop.

If our conjecture is right, we should see a voltage
reading while the magnetic force is acting.  Explicitly
there should be a voltage reading while the wire is
moving and one end of the loop is in the magnetic field
as shown.  The voltage should go to zero as soon as the
wire leaves the magnetic field.  If we reverse the
direction of motion of the loop, the velocity v of the
conduction electrons is reversed, the magnetic force
-ev × B should also be reversed, and thus the sign of the
voltage on the voltmeter should reverse.  If we oscillate
the wire back and forth, keeping one end in the mag-
netic field, we should get an oscillating voltage reading
on the meter.

The wonderful thing about this experiment is that all
these predictions work precisely as described.  There
are further simple tests like moving the loop faster to get
a stronger magnetic force and therefore a bigger volt-
age reading.  Or stopping the wire in the middle of the
magnetic field and getting no voltage reading.  They all
work!

The next step is to calculate the magnitude of the
voltage reading we expect to see.  As you follow this
calculation, do not worry about the sign of the voltage
V because many sign conventions (right hand rules,
positive charge, etc.) are involved.  Instead concentrate
on the basic physical ideas.   (In the laboratory, the sign
of the voltage V you read on a voltmeter depends on
how you attached the leads of the voltmeter to the
apparatus.  If you wish to change the sign of the voltage
reading, you can reverse the leads.)

Since voltage has the dimensions of the potential
energy of a unit test charge, the magnitude of the
voltage in Figure (3) should be the strength of the force
on a unit test charge,   – e v × B with  – e  replaced by
1, times the height h over which the force acts.  This
height h is the height of the magnetic field region in
Figure (3).  Since v and B are perpendicular,    v×B = vB
and we expect the voltage V to be given by

  
V =

force on unit
test charge

×
distance over
which force acts

   
V = vB × h

voltage V on loop
moving at speed
v through field B

(5)

Figure 3c
Pulling the coil out of the magnet
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AIR CART SPEED DETECTOR
The air cart velocity detector we have previously
discussed, provides a direct verification of Equation
(5).  The only significant difference between the air cart
speed detector and the loop in Figure (3) is that the
speed detector coil has a number of turns (usually 10).
In order to see the effect of having more than one turn
in the coil, we show a two turn coil being pulled out of
a magnetic field in Figure (4).

Figure (4) is beginning to look like a plumbing diagram
for a house.  To analyze the diagram, let us start at
Position (1) at the top of the voltmeter and follow the
wire all the way around until we get to Position (6) at
the bottom end of the voltmeter.  When we get to
Position (2), we enter a region  from (2) to (3) where the
magnetic force is increasing the electron fluid pressure
by an amount vBh, as in Figure (3).

Now instead of going directly to the voltmeter as in
Figure (3), we go around until we get to Position (4)

where we enter another region, from (4) to (5), where
the magnetic force is increasing the fluid pressure.  We
get another increase of vBh, and then go to Position (6)
at the bottom of the voltmeter.  In Figure (4) we have
two voltage rises as we go around the two loops, and we
should get twice the reading on the voltmeter.

  
V = 2vBh

voltage reading
for 2 loops

It is an easy abstraction to see that if our coil had N turns,
the voltage rise would be N times as great, or

  
V = NvBh

voltage on an N turn
coilbeingpulledout
of a magneticfield

(6)

Adding more turns is an easy way to increase or
amplify the voltage.
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Figure 4
A two turn loop being pulled through a magnetic field.  With
two turns we have twice as much force pushing the electric
fluid toward the bottom of the gap giving twice the voltage V.
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The setup for the air cart speed detector is shown in
Figure (6).  A multi turn coil, etched on a circuit board
as shown in Figure (5), is mounted as a sail on top of an
air cart.  Suspended over the air cart are two angle iron
bars with magnets set across the top as shown.  This
produces a reasonably uniform magnetic field that goes
across from one bar to the other as seen in the end view
of Figure (6).

In Figure (7), we show the experiment of letting the cart
travel at constant speed through the velocity detector.
In the initial position (a), the coil has not yet reached the
magnetic field and the voltage on the coil is zero, as
indicated in the voltage curve at the bottom of the
figure.

The situation most closely corresponding to Figure (4)
is position (d) where the coil is leaving the magnet.
According to Equation (6), the voltage at this point
should be given by V  =  NvBh, where N = 10 for our
10 turn coil, v is the speed of the carts, B is the strength
of the magnetic field between the angle iron bars, and
h is the average height of the coils.  (Since the coils are
drawn on a circuit board the outer loop has the greatest
height h and the inner loop the least.)  The first time you
use this apparatus, you can directly measure V, N, v and
h and use Equation (6) to determine the magnetic field
strength B.  After that, you know the constants N, B and
h, and Equation (6) written as

  
v = V ×

1
NBh

(6a)

gives you the cart’s speed in terms of the measured
voltage V.  Equation (6a) explains why the apparatus
acts as a speed detector.

Let us look at the voltage readings for the other cart
positions.  The zero readings at Positions (a) and (e) are
easily understood.  None of the coil is in the magnetic
field and therefore there is no magnetic force or volt-
age.

Figure 6
The Faraday velocity detector.  The apparatus is reasonably easy to build.  We first constructed a 10
turn coil by etching the turns of the coil on a circuit board.  This was much better than winding a coil,
for a wound coil tends to have wrinkles that produce bumps in the data.  Light electrical leads, not
shown, go directly from the coil to the oscilloscope.  The coil is mounted on top of an air cart and
moves through a magnetic field produced by two pieces of angle iron with magnets on top as shown.
Essentially we have reproduced the setup shown in Figures 3 and 4, but with the coil mounted on an
air cart.  As long as the coil remains with one end in the magnetic field and the other outside, as shown
in (b), there will be a voltage on the leads to the coil that is proportional to the velocity of the cart.

Figure 5
The multi turn coil that rides on the air cart.
(Only 5 turns are shown.)
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Figure 7
Voltage on the coil as it moves at
constant speed through the magnetic
field.  At position (a ) the coil has not yet
reached the field and there is no voltage.
At position (b) one end of the cart is in
the field, the other outside, and we get a
voltage proportional to the speed of the
cart.  At (c) there is no voltage because
both ends of the cart are in the magnetic
field and the magnetic force on the two
ends cancel.  (There is no change of
magnetic flux at this point.)  At (d), the
other end alone is inside the field,  and
we get the opposite voltage from the one
we had at (b).  (Due to the thickness of
the coil and fringing of the magnetic
field, the voltage rises and falls will be
somewhat rounded.)

Figure 6c
Velocity detector apparatus. The magnetic
field goes across, between the two pieces of
angle iron. The coil, mounted on a circuit
board, is entering the magnetic field.
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We need a closer look to understand the changes in
voltage, when all or part of the coil is inside the
magnetic field.  This situation, for a one turn coil, is
illustrated in Figure (8).  For easier interpretation we
have moved the gap and voltmeter to the bottom of the
coil as shown.  It turns out that it does not matter where
the gap is located, we get the same voltage reading.  We
have also labeled the figures (b), (c), and (d) to corre-
spond to the positions of the air cart in Figure (7).

In Figure (8c) where both ends of the coil are in the
magnetic field, the conduction electrons are being
pulled down in both ends and the fluid is balanced.  The
electron fluid would not flow in either direction if the
gap were closed, thus there is no pressure across the gap
and no voltage reading.  In contrast, in Figure (8d)
where only the left end of the coil is in the magnetic
field, the magnetic force on the left side would cause the
conduction electrons to flow counterclockwise around
the loop if it were not for the gap.  There must be an
electric pressure or voltage drop across the gap to
prevent the counterclockwise flow.  This voltage drop
is what we measure by the voltmeter.

In Figure (8b), where the coil is entering the magnetic
field, the magnetic force on the right side of the coil
would try to cause a clockwise flow of the conduction
electrons.  We should get a pressure or voltage opposite
to Figure (8d) where the coil is leaving.  This reversal
in voltage is seen in the air cart experiment of Figure
(7), as the cart travels from (b) to (d).

Note that in Figure (8), where the horizontal sections of
the coil are also in the magnetic field, the magnetic
force is across rather than along the wire in these
sections.  This is like the gravitational force on the fluid
in a horizontal section of pipe.  It does not produce any
pressure drops.
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Figure 8
When the coil is completely in the magnetic field, the
magnetic force on the electrons in the left hand leg (1)
is balanced by the force on the electrons in the right
hand leg (2), and there is no net pressure or voltage
across the gap.  When the coil is part way out, there is
a voltage across the gap which balances the magnetic
force on the electrons.  The sign of the voltage depends
upon which leg is in the magnetic field.
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A RELATIVITY EXPERIMENT
Now that we have seen, from Figure (7), extensive
experimental evidence for the magnetic force on the
conduction electrons in a wire, let us go back to Figure
(3) where we first considered these forces, and slightly
modify the experiment.  Instead of pulling the coil out
of the magnet, let us pull the magnet away from the coil
as shown in Figure (9b).

In Figure (9a) we have redrawn Figure (3), and added
a stick figure to represent a student who happens to be
walking by the apparatus at the same speed that we are
pulling the coil out of the magnet.  To this moving
observer, the coil is at rest and she sees the magnet
moving to the left as shown in (9b).  In other words,
pulling the magnet away from the coil is precisely the
same experiment as pulling the coil from the magnet,
except it is viewed by a moving observer.

The problem that the moving observer faces in Figure
(9b) is that, to her, the electrons in the coil are at rest.  For
her the electron speed is v = 0 and the magnetic force

 FB, given by

  FB = –e v × B = 0 for Figure 9b (7)

is zero!  Without a magnetic force to create the pressure
in the electrical fluid in the wire, she might predict that
there would be no voltage reading in the voltmeter.

But there is a voltage reading on the voltmeter!  We
have used this voltage to build our air cart velocity
detector.  If the voltmeter had a digital readout, for
example, then it is clear that everyone would read the
same number no matter how they were moving, whether
they were like us moving with the magnet (9a), or like
her moving with the coil (9b).  In other words, she has
to find some way to explain the voltage reading that she
must see.

The answer she needs lies in the Lorentz force law that
we discussed in Chapter 28.  This law tells us the total
electromagnetic force on a charge q due to either
electric or magnetic fields, or both.  We wrote the law
in the form

  F = qE + qv × B (28-20)

where E  and  B  are the electric and magnetic fields
acting on the charge.
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Figure 9
The only difference between (a) and (b) is the point
of view of the observer.  In (a) we see a magnetic
force    FB = –e v × B  because the electrons are
moving at a speed v through a magnetic field B .
To the observer in (b), the magnet is moving, not
the electrons.  Since the electrons are at rest, there
is no magnetic force on them.  Yet the voltmeter
reading is the same from both points of view.
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Let us propose that the Lorentz force law is generally
correct even if we change coordinate systems.  In
Figure (9a) where we explained everything in terms of
a magnetic force on the conduction electrons, there was
apparently no electric field and the Lorentz force law
gave

   F = qE + qv × B

= – e v × B
in Figure9a,

E = 0
(8a)

In Figure (9b), where  v = 0, we have

   F = qE + qv × B

= –e E
in Figure9b,

v = 0
(8b)

In other words, we will assume that the magnetic force
of Figure (9a) has become an electric force in Figure
(9b).  Equating the two forces gives

   
E

That should be
in Figure 9b

= v × B
From

Figure 9a
(9)

In Figure (9c) we have redrawn Figure (9b) showing an
electric field causing the force on the electrons. Be-
cause the electrons have a negative charge, the electric
field must point up in order to cause a downward force.

That the magnetic force of Figure (9a) becomes an
electric force in Figure (9c) should  not be a completely
surprising result.  In our derivation of the magnetic
force law, we also saw that an electric force from one
point of view was a magnetic force from another point
of view.  The Lorentz force law, which includes both
electric and magnetic forces, has the great advantage
that it gives the correct electromagnetic force from any
point of view.

Exercise 1

Equation (9) equates E in Figure (9c) with   v × B in Figure
(9a).  Show that E  and   v × Bpoint in the same direction.
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Figure 9c
From the point of view that the coil is at rest, the
downward force on the electrons in the coil must be
produced by an upward directed electric field.
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An experiment whose results may be surprising, is
shown in Figure (10).  Here we have a magnetic field
produced by an electromagnet so that we can turn B on
and off. We have a wire loop that is large enough to
surround but not lie in the magnetic field, so that  B = 0
all along the wire.  Again we have a gap and a voltmeter
to measure any forces that might be exerted on the
conduction electrons in the wire.

We have seen that if we pull the wire out of the magnet,
Figure (9a), we will get a voltage reading while the loop
is leaving the magnetic field.  We have also seen, Figure
(9c), that we get a voltage reading if the magnetic field
is pulled out of the loop.  In both cases we started with
a magnetic field through the loop, ended up with no
magnetic field through the loop, and got a reading on
the voltmeter while the amount of magnetic field
through the loop was decreasing.

Now what we are going to do in Figure (10) is simply
shut off the electromagnet.  Initially we have a mag-
netic field through the loop, finally no field through the
loop.  It may or may not be a surprise, but when we shut
off the magnetic field, we also get a voltage reading.
We get a voltage reading if we pull the loop out of the
field, the field out of the loop, or shut off the field.  We
are seeing that we get a voltage reading whenever we
change the amount of magnetic field, the flux of
magnetic field, through the loop.

Magnetic Flux
In our discussion of velocity fields and electric fields,
we used the concept of the flux of a field.  For the
velocity field, the flux   Φv of water was the volume of
water flowing per second past some perpendicular area

  A⊥.  For a uniform stream moving at a speed v, the flux
was   Φv = vA⊥.  For the electric field, the formula for
flux was   ΦE = EA⊥.

In Figures (9 and 10), we have a magnetic field that
"flows" through a wire loop.  Following the same
convention that we used for velocity and electric fields,
we will define the magnetic flux   ΦB as the strength of
the field B times the perpendicular area   A⊥ through
which the field is flowing

  ΦB = BA⊥
Definition of
magnetic flux

(10)

In both figures (9) and (10), the flux   ΦB through the
wire loop is decreasing.  In Figure (9),   ΦB decreases
because the perpendicular area    A⊥ is decreasing as the
loop and the magnet move apart.  In Figure (10), the
flux   ΦB is decreasing because B is being shut off.  The
important observation is that whenever the flux    ΦB
through the loop decreases, whatever the reason for the
change may be, we get a voltage reading V on the
voltmeter.

Figure 10
Here we have a large coil that lies completely outside
the magnetic field.  Thus there is no magnetic force on
any of the electrons in the coil wire.  Yet when we turn
the magnet on or off, we get a reading in the volt meter.
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One Form of Faraday's Law
The precise relationship between the voltage and the
change in the magnetic flux through the loop is found
from our analysis of Figure (9) where the loop and the
magnet were pulled apart.  We got a voltage given by
Equation (5) as

 V = vBh (5)

Let us apply Equation (5) to the case where the magnet
is being pulled out of the loop as shown in Figure (11).
In a time dt, the magnet moves to the left a distance dx
given by

dx  =  vdt (11)

and the area of magnetic field that has left the loop,
shown by the cross hatched band in Figure (11), is

 

dA = hdx =
area of magnetic
field that has
left the loop

(12)

This decrease in area causes a decrease in the magnetic
flux   ΦB = BA ⊥ through the loop.  The change in flux

  dΦB is given by

  dΦB = –BdA = –Bhdx

= –Bhvdt (13)

where the – sign indicates a reduction in flux, and we
used Equation (11) to replace dx by vdt .

Dividing both sides of Equation (13) by dt gives

  dΦB

dt
= –Bhv (14)

But Bhv is just our voltmeter reading.  Thus we get the
surprisingly simple formula

   
V = –

dΦB

dt
Oneform of
Faraday's law (15)

Equation (15) is one form of Faraday’s law.

Equation (15) has a generality that goes beyond our
original analysis of the magnetic force on the conduc-
tion electrons.  It makes no statement about what causes
the magnetic flux to change.  We can pull the loop out
of the field as in Figure (9a), the field out of the loop as
in Figure (9b), or shut the field off as in Figure (10).  In
all three cases Equation (15) predicts that we should see
a voltage, and we do.

If we have a coil with more than one turn, as we had
back in Figure (4), and put a voltmeter across the ends
of the coil, then we get N times the voltage, and
Equation (15) becomes

   
V = N –

dΦB

dt
for a coil
with N turns

(15a)

provided dΦB/dt is the rate of change of magnetic flux
in each loop of the coil.

Exercise 2

Go back to Figure (7) and explain the voltage plot in
terms of the rate of change of the flux of magnetic
field through the coil riding on top of the air cart.

dx

v

x

h

large coil at rest

X X X X X

magnetic field
pointing down

moving
electromagnet

V

flux leaving
in a time dtX X X X X

X X X X X

X X X X X

X X X X X

X X X X X

X

X

X

X

X

X

Figure 11
As the magnet and the coil move away from each
other, the amount of magnetic flux through the
coil decreases.  When the magnet has moved a
distance dx, the decrease in area is hdx, and the
magnetic flux decreases by    B×hdx.
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A Circular Electric Field
In Figure (10), where we shut the magnet off and got a
voltage reading on the voltmeter, there must have been
some force on the electrons in the wire to produce the
voltage.  Since there was no magnetic field out at the
wire, the force must have been produced by an electric
field.  We already have a hint of what that electric field
looks like from Figure (9c).  In that figure, we saw that
the moving magnetic field created an upwardly di-
rected electric field acting on the electrons on the left
side of the wire loop.

To figure out the shape of the electric field produced
when we shut off the magnet, consider Figure (12),
where we have a circular magnet and a circular loop of
wire .  We chose this geometry so that the problem
would have circular symmetry (except at the gap in the
loop).

To produce the same kind of voltage V that we have
seen in the previous experiments, the electric field at
the wire must be directed up on the left hand side, as it
was in Figure (9c).  But because of the circular symme-
try of the setup in Figure (12), the upwardly directed
electric field on the left side, which is parallel to the
wire, must remain parallel to the wire as we go around
the wire loop.  In other words, the only way we can have
an upwardly directed electric field acting on the elec-
trons on the left side of the loop, and maintain circular
symmetry, is to have the electric field go in a circle all
the way around the loop as shown in Figure (12).

We can determine the strength of this circular electric
field, by figuring out how strong an electric field must
act on the electrons in the wire, in order to produce the
voltage V across the gap. We then use Equation (15) to
relate this voltage to the rate of change of the magnetic
flux through the loop.

E

E

X X

X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X

X X

VV

downward pointing
magnetic field
being turned off

electric field
around decreasing
magnetic flux

upwardly directed 
electric field exerts downward 
electric force on electrons in the
left side of wire loop as in Fig. 9b

circular electric field
pushes on electrons
all the way around
the wire loop

E
  

V = –
dΦB

dt

Figure 12
When the magnetic field in the magnet is turned off, a circular electric field is
generated.  This electric field exerts a force on the electrons in the wire, creating
a pressure in the electric fluid that is recorded as a voltage pulse by the voltmeter.
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Recall that the definition of electric voltage used in
deriving Equation (5) was

  
V =

force on unit
test charge

×
distance over
which force acts

For Figure (12), the force on a unit test charge is the
electric field E, and this force acts over the full circum-
ference   2πr of the wire loop.  Thus the voltage V across
the gap is

  V = E × 2πr

Equating this voltage to the rate of change of magnetic
flux through the wire loop gives

  
V = E × 2πr = –

dΦB
dt (16)

Equation (16) tells us that the faster the magnetic field
dies, i.e. the greater   dΦB dtdΦB dt, the stronger the electric
field E produced.

Line Integral of  E around a Closed Path
In Figure (13) we have removed the wire loop and volt
meter from Figure (12) so that we can focus our
attention on the circular electric field produced by the
decreasing magnetic flux.  This is not the first time we
have encountered a circular field.  The velocity field of
a vortex and the magnetic field of a straight current
carrying wire are both circular.  We have redrawn
Figure (29-10) from the last chapter, showing the
circular magnetic field around a wire.

The formula for the strength of the magnetic field in
Figure (29-10) is

  B × 2πr = µ0 i (28-18)

a result we derived back in Equation 28-18.  This
should be compared with the formula for the strength
of the electric field in Figure (13)

  
E × 2πr = –

dΦB
dt

(16)

iup

B

electric
current
pointing up

magnetic field
around electric
current

E

E

X X

X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X

X X

downward pointing
magnetic field
being turned off

electric field
around decreasing
magnetic flux

E

Figure 13
Circular electric field around
a changing magnetic flux.

Figure 29-10
Circular magnetic field
around an electric current.

  
E × 2π r = –

dΦB
dt   B × 2πr = µ0 i
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In our discussion of Ampere’s law, we called   µ0i the
“source” of the circular magnetic field.  By analogy, we
should think of the rate of change of magnetic flux,

  – dΦB/dt, as the “source” of the circular electric field.

In Chapter 29, we generalized Ampere’s law by replac-
ing   B * 2πr by the line integral   B⋅d  along a closed
path around the wire.  The result was

   
B⋅d = µ0i

Ampere's law
for
magnetic fields

(29-18)

where the line integral can be carried out along any
closed path surrounding the wire.  Because of close
analogy between the structure and magnitude of the
magnetic field in Figure (29-10) and the electric field in
Figure (13), we expect that the more general formula
for the electric field produced by a changing magnetic
flux is

   
E⋅d = –

dΦB
dt

Faraday's law
for
electric fields

(17)

Equation 17 is the most general form of Faraday’s law.
It says that the line integral of the electric field around
any closed path is equal to (minus) the rate of change
of magnetic flux through the path.

USING FARADAY'S LAW
Up until now we have been looking for arguments
leading up to Faraday’s law.  Let us now reverse the
procedure, treating Equation 17 as a basic law for
electric fields, and see what the consequences are.

Electric Field of an Electromagnet
As a beginning exercise in the use of Faraday's law, let
us use  Equation (17) to calculate the electric field of the
electromagnet in Figure (13).  We first argue that
because of the circular symmetry, the electric field
should travel in circles around the decreasing magnetic
field.  Thus we choose a circular path, shown in Figure
(13a), along which we will calculate    E⋅d .  Then
using the assumption (because of circular symmetry)
that E is parallel to  d  and has a constant magnitude all
the way around the circular path, we can write

  E⋅d = E d = E d = E 2πr (18)

Using this result in Equation (17) gives

  E⋅d = E 2πr = –
dΦB
dt

(19)

which is the result we had in Equation (16).

Right Hand Rule for Faraday's Law
We can get the correct direction for E with the follow-
ing right hand rule.  Point the thumb of your right hand
in the direction of the magnetic field.  If the magnetic
flux is decreasing (if   –dΦB/dt is positive), then the
fingers of your right hand curl in the direction of E.  If
the magnetic flux is increasing, then E points the other
way.  Please practice this right hand rule on Figures
(13a), (9c), and (15).

downward pointing
magnetic field
being turned off

path for
calculating

E⋅d

r

X X

X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X X X

X X X X

X X

Figure 13a
Using Faraday's law to calculate E.
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Electric Field of Static Charges
If all we have around are static electric charges, then
there are no magnetic fields, no magnetic flux, and no
changing magnetic flux.  For this special case,

  dΦB/dt = 0 and Faraday’s law gives

  
E⋅d = 0

for electric fields
produced by
static charges

(20)

When the line integral of a force is zero around any
closed path, we say that the force is conservative.  (See
Equation 29-12.)  Thus we see that if we have only
static electric charge (or constant magnetic fields), the
electric field is a conservative field.

In contrast, if we have changing magnetic fields, if
  dΦB/dt  is not zero, the electric field is not conserva-

tive.  This can lead to some rather interesting results
which we will see in our discussion of a device called
the betatron.

THE BETATRON
As we have mentioned before, when you encounter a
new and strange equation like Faraday’s law, it is
essential to have an example that you know inside out
that illustrates the equation.  This transforms the equa-
tion from a collection of symbols into a set of instruc-
tions for solving problems and making predictions.
One of the best examples to learn for the early form of
Faraday’s law, Equation (15a), was the air cart speed
detector experiment shown in Figure (7).  (You should
have done Exercise 2 analyzing the experiment using
Equation (15a).

The most direct example illustrating Faraday’s law for
electric fields, Equation (17), is the particle accelerator
called the betatron.  This device was used in the 1950s
for study of elementary particles, and later for creating
electron beams for medical research.

A cross-sectional view of the betatron is shown in
Figure (14a). The device consists of a large electro-
magnet with a circular evacuated doughnut shaped
chamber for the electrons.  The circular shape of the
electromagnet and the evacuated chamber are more
clearly seen  in the top view, Figure (14b).  In that view
we show the strong upward directed magnetic field B0
in the gap and the weaker upward directed magnetic
field out at the evacuated doughnut.

The outer magnetic field Br is required to keep the
electrons moving along a circular orbit inside the
evacuated chamber.  This field exerts a force

  FB = –e v × Br that points toward the center of the
circle and has a magnitude mv2/r in order to produce
the required radial acceleration.  Thus Br  is given by

Br  =  mv
er

which is our familiar formula for electrons moving
along a circular path in a magnetic field. (As a quick
review, derive the above equation.)

Since a magnetic field does no work we need some
means of accelerating the electrons.  In a synchrotron,
shown in Figure (28-27), a cavity which produces an
electric accelerating field is inserted into the electron’s
path.  As an electron gains energy and momentum (mv)
each time it goes through the cavity, the magnetic field

Bo

evacuated doughnut for
charged particles

electromagnet

Br Br

Figure 14a
Cross-sectional view of a betatron, showing
the central field  B0  and the field  Br  out at the
evacuated doughnut.  The relative strength of

 B0  and  Br  can be adjusted by changing the
shape of the electromagnet pole pieces.
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B was increased so that the electron’s orbital radius r =
mv/eB remains constant.  (The synchronizing of B with
the momentum mv leads to the name synchrotron.)

In the betatron of Figure (14), we have a magnetic field
Br to keep the electrons in a circular orbit, and as the
electrons are accelerated, Br is increased to keep the
electrons in an orbit of constant radius r.  But what
accelerates the electrons?  There is no cavity as in a
synchrotron.

Suppose that both B0 and Br are increased simulta-
neously.  In the design shown in Figure (14a), B0 and
Br  are produced by the same electromagnet, so that we
can increase both together by turning up the electro-
magnet.  If the strong central field B0 is increased, we
have a large change in the magnetic flux through the
electron orbit, and therefore by Faraday’s law

  E ⋅ d = – dΦB/dt we must have a circular electric

field around the flux as shown in Figure (15), just as in
Figure (13).  This electric field is exactly parallel to the
orbit of the electrons and accelerates them continu-
ously as they go around.

What is elegant about the application of Faraday's law
to the electrons in the betatron, is that   E ⋅ d , which
has the dimensions of voltage, is the voltage gained by
an electron going once around the circular orbit.  The
energy gained is just this voltage in electron volts

  energy gained
(in eV) by electron
going around once

= E ⋅ d (21)

This voltage is then related to   dΦB/dt by Faraday’s
law.

magnetic field B
at the electron path

r path of 
electrons

evacuated 
doughnut

o
m

v

FBmagnetic field B
directed up E

oB  directed
up and increasing

E

Figure 15
When the strong central field  B0  in the
betatron is rapidly increased, it produces a
circular electric field that is used to
accelerate the electrons.  The electric field E
is related to the flux   ΦΦB of the central field

 B0  by Faraday's law    E ⋅⋅d = – d ΦΦB / dt .

Figure 14b
Top view of the betatron showing the
evacuated doughnut, the path of the
electrons, and the magnetic fields  B0  in the
center and  Br   out at the electron path.  In
order to keep the electrons moving on a
circular path inside the doughnut, the
magnetic force    FB = –e v ×× Br   must have a
magnitude   FB = mv2 rmv2 r  where r is the radius of
the evacuated doughnut.
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Let us consider an explicit example to get a feeling for
the kind of numbers involved.  In the 100 MeV betatron
built by General Electric, the electron orbital radius is
84 cm, and the magnetic field  B0  is cycled  from 0 to
.8 tesla in about 4 milliseconds. (The field  B0  is then
dropped back to 0 and a new batch of electrons are
accelerated. The cycle is repeated 60 times a second.)

The maximum flux   Φm through the orbit is

  Φm = B0 max
πr2 = .8 tesla × π × (.84m)2

  Φm = 1.8 tesla m2

If this amount of flux is created in 4 milliseconds, then
the average value of the rate of change of magnetic flux

  ΦB  is

  dΦB

dt
=

Φm

.004 sec
=

1.8
.004

= 450 volts

Thus each electron gains 450 electron volts of kinetic
energy each time it goes once around its orbit.

Exercise 3
(a) How many times must the electron go around to
reach its final voltage of 100 MeV advertised by the
manufacturer?

(b) For a short while, until the electron’s kinetic energy
gets up to about the electron’s rest energy  m0c2, the
electron is traveling at speeds noticeably less than c.
After that the electron’s speed remains very close to c.
How many orbits does the electron have to make before
its kinetic energy equals its rest energy?  What fraction
of the total is this?

(c) How long does it take the electron to go from the point
that its kinetic energy equals its rest energy, up to the
maximum of 100 MeV?  Does this time fit within the 4
milliseconds that the magnetic flux is being increased?

TWO KINDS OF FIELDS
At the beginning of the chapter we showed that the line
integral   E ⋅ d  around a closed path was zero for any
electric field produced by static charges.  Now we see
that the line integral is not zero for the electric field
produced by a changing magnetic flux.  Instead it is
given by Faraday’s law   E ⋅ d = –dΦB/dt.  These
results are shown schematically in Figure (16) where
we are looking at the electric field of a charged rod in
(16a) and a betatron in (16b).

In Figure (17), we have sketched a wire loop with a
voltmeter, the arrangement we used in Figure (12) to
measure the   E ⋅ d .  We will call this device an
“   E ⋅ d  meter ”.  If you put the   E ⋅ d  

 meter over
the changing magnetic flux in Figure (16b), the voltme-
ter will show a reading of magnitude V =   dΦB/dt.  If
we put the   E ⋅ d  meter over the charged rod in
Figure (16a), the meter reads V = 0.  Thus we have a
simple physical device, our   E ⋅ d  meter, which can
distinguish the radial field in Figure (16a) from the
circular field in Figure (16b).  In fact it can distinguish
the circular field in (16b) from any electric field E
whatsoever that we can construct from static charges.
Our   E ⋅ d  meter allows us to separate all electric
fields into two kinds, those like the one in (16b) that can
give a  non zero reading, and those, produced by static
charges, which give a   zero reading.

Fields which register on our   E ⋅ d  meter generally
close on themselves like the circular fields in (16b).
Since these fields do not appear to have sources, they
are called sourceless or  “solenoidal” fields.  An

  E ⋅ d  meter is the kind of device we need to detect
solenoidal fields.

The conservative fields produced by static charges
never close on themselves.  They always start on
positive charge, end on negative charge, or come from
or go to infinity.  These fields diverge from point
charges and thus are sometimes called “divergent”
fields.  Our   E ⋅ d  meter does not work on the
divergent fields because we always get a zero reading.
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Although the   E ⋅ d  meter does not work on diver-
gent fields, Gauss’ law with the surface integral does.
In a number of examples we used Gauss' law

  
E ⋅ dA

closed
surface

=
Qin

ε0
(29-5)

to calculate the electric field of static charges.  We are
seeing now that we use a surface integral to measure
divergent fields, and a line integral to measure sole-
noidal fields.  There are two kinds of electric fields, and
we have two kinds of integrals to detect them.

It turns out to be a general mathematical theorem that
any vector field can be separated into a purely divergent
part and a purely solenoidal part.  The field can be
uniquely specified if we have both an equation involv-
ing a Gauss’ law type surface integral to tell us the
divergent part, and an equation involving a Faraday’s
law type line integral to tell us the solenoidal part.

(b) Electric field produced by a changing

     magnetic flux has 

EoB  directed
up and increasing

E

E⋅d ≠ 0

E ⋅ d = – dΦB dtdΦB dt

E

charged
rod

(a) Electric field of a static charge distribution

      has the property E ⋅ d = 0

E⋅d = 0

integration

path

integration

path

VE ⋅ d meter

Figure 17
Wire loop and a volt meter can be used directly to
measure    E ⋅⋅d  around the loop.  We like to call
this apparatus an    E ⋅⋅d  meter.

Figure 16
Two kinds of electric field.  Only the
field produced by the changing magnetic
flux has a non zero line integral.
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Exercise 4
a) Maxwell’s equations are a set of equations that
completely define the behavior of electric fields E and
magnetic fields B.  One of Maxwell’s equations is
Faraday’s law

  E ⋅ d = – dΦB/dt

which gives the line integral for the electric field. How
many Maxwell equations are there?  (How many equa-
tions will it take to completely define both E and B?)

b) Are any of the other equations for electric and
magnetic fields we have discussed earlier, candidates
to be one of Maxwell’s equations?

c) At least one of Maxwell’s equations is missing – we
have not discussed it.  Can you guess what the equation
is and write it down?  Explain what you can about your
guess.

d) Back in our early discussion of velocity fields and
Gauss’ law, we said that a point source  for the velocity
field of an incompressible fluid like water, was a small
“magic” sphere in which water molecules were created.
Suppose we do not believe in magic and assume that
for real water there is no way that water molecules can
be created or destroyed.  Write down an integral equa-
tion for real water that expresses  the fact that the
vreal water has no sources (that create water molecules)
or sinks (that destroy them).

Do the best you can on these exercises now.  Keep a
record of your work, and see how well you did when we
discuss the answers later in chapter 32.

Note on our    E ⋅⋅ d  meter

Back in Figure (17) we used a wire loop and a voltmeter
as an    E ⋅ d  meter.  I.e., we are saying that the
voltage reading V on the voltmeter gives us the integral
of  E around the closed path defined by the wire loop.
This is strictly true for a loop at rest, where the conduc-
tion electrons experience no magnetic force and all
forces creating the electric pressure are caused by the
electric field E.

Earlier, in Figure (9), we had two views of an    E ⋅ d
meter.   In the bottom view, (9b) the loop is at rest and
the voltage must be caused by an electric force.  The
moving magnetic field must have an electric field
associated with it.  But in Figure (9a) where the magnet
is at rest, there is no electric field and the voltage
reading is caused by the magnetic force on the conduc-
tion electrons in the moving wire.  Strictly speaking,  in
Figure (9a) the wire loop and voltmeter are measuring
a pressure caused by magnetic forces and not an

   E ⋅ d .  The wire loop must be at rest, the path for
our line integral cannot move, if we are measuring

   E ⋅ d .

In practice, however,  it makes little difference whether
we move the magnet or the loop, because the principle
of relativity requires that we get the same voltage V.
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APPLICATIONS OF
FARADAY’S LAW
The last few sections have been somewhat heavy on
theory.  To end this chapter on a more practical note, we
will consider some simple applications of Faraday’s
law, one that has immense practical applications and
another that we can use in the laboratory.  First we will
discuss the AC voltage generator which is used by most
power stations throughout the world.  We will also
describe a field mapping experiment in which we use
our   E ⋅ d  meter to map the magnetic field of a pair
of Helmholtz coils.  In the next chapter Faraday’s law
is used to explain the operation of transformers and
inductors that are common circuit elements in radio and
television sets.

The AC Voltage Generator
In Figure (18) we have inserted a wire loop of area A in
the magnetic field B of a magnet.  We then rotate the
coil at a frequency ω  about an axis of the coil as shown.
We also attach a voltmeter to the coil, using sliding
contacts so that the voltmeter leads do not twist as the
coil spins.

As shown in Figure (19), as the loop turns, the magnetic
flux changes sinusoidally from a maximum positive
flux in (19a) to zero flux in (c) to a maximum negative
flux in (d) to zero in (e).  In (18c), we have shown the
vector A representing the area of the coil (A points

magnet

magnet

coil of wire

rotating coil
of area A

V

B
ω

a) end view of a coil of wire
    rotating in a magnetic field

b) top view showing the coil of area A

c) Vector A representing the 
    area of the loop

A

Figure 18
An electric generator consists of a coil
of wire rotating in a magnetic field.
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Figure 19
The changing magnetic flux through the rotating loop.
The general formula for   ΦΦB  is    BAcosθθ  where θθ   is the
angle shown in (b), between the magnetic field and the
normal to the loop.  If the coil is rotating uniformly,

then    θθ = ωω t , and    ΦΦB = BAcosωω t
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perpendicular to the plane of the coil) and we can use
our usual formula for magnetic flux to get

  ΦB = B⋅A = BAcos θ (22)

If the coil is rotating at a constant angular velocity ω ,
then θ  =  ωt  and we have

  ΦB = BAcos ωt (23)

Differentiating Equation (23) with respect to time
gives

  dΦB

dt
= –ωBA sinωt (24)

Finally we use Faraday’s law in the form

  
V = –

dΦB

dt
(15)

to predict that the voltage V on the voltmeter will be

  V = ωBA sin ωt (25)

If we use a coil with N turns, we get a voltage N times
as great, or

  V = ωNBA sin ωt = V0sin ωt (26)

where  V0 is the amplitude of the sine wave as shown in
Figure (20). Equation (26) shows that by rotating a coil
in a magnetic field, we get an alternating or “AC”
voltage.  Power stations use this same principle to
generate AC voltages.

Equation 26 predicts that the voltage amplitude  V0
produced by an N turn coil of area A rotating in a
magnetic field B is

  V0 = ωNBA (27)

where the angular frequency ω radians per second is
related to the frequency f cycles per second and the
period T seconds per cycle by

  
ω rad

sec
= 2π rad

cycle
× f

cycle
sec

= 2π rad
cycle

×
1

T
sec

cycle

Exercise 5
Suppose that you have a magnetic field B = 1 tesla, and
you rotate the coil at 60 revolutions (cycles) per second.
Design a generator that will produce a sine wave
voltage whose amplitude is 120 volts.

Exercise 6
Figures (21a,b) show the voltage produced by a coil of
wire rotating in a uniform magnetic field of a fairly large
electromagnet. (The setup is similar to that shown in
Figures 18 and 19.) The coil was square, 4 cm on a side,
and had 10 turns. To go from the results shown in Figure
(21a) to those shown in Figure (21b), we increased the
rotational speed of the motor turning the coil. In both
diagrams, we have selected one cycle of the output
wave, and see that the frequency has increased from 10
cycles per second to nearly 31 cycles per second.

a) Explain why the amplitude of the voltage signal
increased in going from Figure (21a) to (21b). Is the
increase what you expected?

b) Calculate the strength of the magnetic field of the
electromagnet used. Do you get the same answer using
Figure (21a) and using Figure (21b)?Vo

Vo–
T

t

Figure 20
Amplitude and period of a sine wave.
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Gaussmeter
Exercise 6 demonstrates one way to measure the
strength of the magnetic field of a magnet. By spinning
a coil in a magnetic field, we produce a voltage ampli-
tude given by Equation 27 as   V0 = ωNBA. Thus by
measuring  V0 , ω, N, and A, we can solve for the
magnetic field B.

A device designed to measure magnetic fields is called
a gaussmeter. A commercial gaussmeter, used in our
plasma physics lab, had a small coil mounted in the tip
of a metal tube as shown in Figure (22).  A small motor
also in the tube spun the coil at high speed, and the
amplitude V0 of the coil voltage was displayed on a
meter.  The meter could have been calibrated using
Equation (27), but more likely was calibrated by insert-
ing the spinning coil into a known magnetic field.

In an attempt to measure the magnetic field in the
Helmholtz coils used for our electron gun experiments,
students have also built rotating coil gaussmeters.
Despite excellent workmanship, the results were uni-
formly poor.  The electrical noise generated by the
sliding contacts and the motor swamped the desired
signal except when B was strong.  This approach turned
out not to be the best way to measure B in the Helmholtz
coils.

rotating coil

motor

meter
IIIIIIIIIII

Figure 22
A commercial gauss meter, which measures the
strength of a magnetic field, has a motor and a
rotating coil like that shown in Figure 18.  The
amplitude  V0  of the voltage signal is displayed on
a meter that is calibrated in gauss.

Figure 21
Voltage output from a coil rotating in a uniform
magnetic field. The coil was 4 cm on a side, and
had 10 turns. In each figure we have selected
one cycle of the output wave, and see that the
frequency of rotation increased from 10 cycles
per second in a) to nearly 31 cycles per
second in b).

a)

b)
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A Field Mapping Experiment
To measure the magnetic field in the Helmholtz coils,
it is far easier to “rotate the field” than the detector loop.
That is, use an alternating current in the Helmholtz
coils, and you will get an alternating magnetic field in
the form

  B = B0 sin ωt (28)

where w is the frequency of the AC current in the coils.
Simply place a stationary detector loop in the magnetic
field as shown in Figure (23) and the magnetic flux
through the detector loop will be

  ΦB = B⋅A = B0⋅A sin ωt (29)

where A is the area of the detector loop.  By Faraday’s
law, the voltage in the voltmeter or oscilloscope at-
tached to the detector loop is given by

  
V = –

dΦB

dt
= – ωB0⋅A cos ωt (30)

If our detector loop has N turns of wire, then the voltage
will be N times as great, and the amplitude V0 we see
on the oscilloscope screen will be

  
V0 = Nω B0⋅A (31)

Figure 23
If you use an alternating current in the Helmholtz coils,
then B has an alternating amplitude    B = B0cos ωω t .
You can then easily map this field with the detector loop
shown above.  If you orient the loop so that the signal on
the oscilloscope is a maximum, then you know that B is
perpendicular to the detector loop and has a magnitude
given by

   V = V0sin ωω t = dΦΦB / dt = d / dt NABcos ωω t .

B

V

θ

oscilloscope

detector loop

10 turn
loop

small
stick

1 cm
area

2

Helmholtz coils

This is essentially the same formula we had for the
rotating coil gaussmeter, Equation (27).  The differ-
ence is that by “rotating the field” rather than the coil,
we avoid sliding contacts, motors, electrical noise, and
can make very precise measurements.

A feature of Equation (31) that we did not have when
we rotated the coil is the dot product   B0⋅A.  When the
detector coil is aligned so that its area vector A (which
is perpendicular to the plane of the detector coil) is
parallel to  B0,

 the dot product   B0⋅A is a maximum.
Thus we not only measure the magnitude of  B0, we also
get the direction by reorienting the detector coil until
the V0 is a maximum.

As a result, a small coil attached to an oscilloscope,
which is our   E⋅d  meter, can be used to accurately
map the magnitude and direction of the magnetic field
of the Helmholtz coils, or of any coil of wire.  Unlike
our earlier electric field mapping experiments, there
are no mysteries or unknown constants.  Faraday’s law,
through Equation (31), gives us a precise relation
between the observed voltage and the magnetic field.
The experimental setup is seen in Figure (24).

Still another way to measure magnetic fields is illus-
trated in Exercise 7.

Figure 24
Experimental setup for the magnetic field mapping
experiment. A 60 cycle AC current is running through
the Helmholtz coils, producing an alternating magnetic
flux through the 10 turn search coil. The resulting
induced voltage is seen on the oscilloscope screen.
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Exercise 7
The point of this experiment is to determine the strength
of the magnetic field produced by the small magnets
that sat on the angle iron bars in the velocity detector
apparatus.  We placed a short piece of wood between
two magnets so that there was a small gap between the
ends as seen in the actual size computer scan of Figure
(25).  The pair of magnets were then suspended over
the air track as shown in Figure (26).

On top of the air cart we mounted a single turn coil.
When the air cart passes under the magnets, the single
turn coil passes through the lower gap between the
magnets as shown.  The dimensions of the single turn
coil are shown in Figure 27. We also show the dimen-
sions and location of the lower end of one of the magnets
at a time when the coil has passed part way through the
gap.  You can see that, at this point, all the magnetic flux
across the lower gap is passing completely through the
single turn coil.  Figure 28 is a recording of the induced
voltage in the single turn coil as the coil passes com-
pletely through the gap.  The left hand blip was pro-
duced when the coil entered the gap, and the right hand
blip when the coil left the gap.  The air track was
horizontal, so that the speed of the air cart was constant
as the coil moved through the gap.  Determine the
strength of the magnetic field B in the gap.  Show and
explain your work.

Figure 25
Two C
Magnets with
wood spacer.

1 turn coil

air cart

air track

magnetic 
field

magnets

1 turn
coil

moving air cart

stationary
magnets

v

1 turn coil

25.3 cm

2.5 cm
2.54 cm

.95 cm

end of magnet

Figure 27
Dimensions of the single turn coil. We also
show the dimensions of the end of the
magnets through which the coil is passing.

Figure 26
A single turn coil, mounted on an air cart, moves
through the lower gap between the magnets.

Figure 28
Voltage induced in the single turn coil.
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Exercise 8
As shown in Figure (29), we started with a solenoid with
219 turns wrapped in a 1" diameter plastic tube. The coil
is 45.4 cm long. The current going through the coil first
goes through a .1  Ω   resistor. By measuring the voltage
V1 across that resistor, we can determine the current
through the solenoid. V1 is shown as the lower curve in
Figure (30).

a) Using V1 from Figure 30, calculate the magnitude B
of the magnetic field in the solenoid.

We then wound 150 turns of wire around the center
section of the solenoid, as indicated in Figure (29). You
can see that the entire flux   Φ1  of the Magnetic field of the
solenoid, goes through all the turns of the outer coil.

b) Use this fact to predict the voltage V2 across the outer
coil, and then compare your prediction with the experi-
mental V2 shown in the upper curve of Figure (30).

i (t)

B

R = .1Ω

1

V2

V1

150 turns

219 turns

45.4 cm

1" diameter
inner coil

Figure 29
The inner (primary) coil 1 is 45.4 cm long, has 219
turns and is wound on a 2.54 cm (1") diameter tube.
The outer (secondary) coil consists of 150 turns
wound tightly around the center section of the primary
coil. The current through the primary coil goes
through a .1Ω resistor, and the voltage  V1  is measured
across that resistor.  V2  is the voltage induced in the
secondary coil.

voltage  V2 across
the outer coil

both voltages are
to the same scale

voltage  V1 across
the .1Ω resistor

Figure 30
The voltage  V1  across the .1Ω resistor measures the current in the primary (219
turn) coil.  V2  is the voltage induces in the secondary (outer 150 turn) coil.
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